冷蔵庫の選び方、使い方、修理 【図解】

冷蔵庫とは 英語:refrigerator

冷蔵庫は食品を低温で保存することにより保存期間を長くすることを目的としている。
食品の腐敗は細菌の数が増える事で起こる。栄養豊富な食品は、細菌が繁殖する絶好の温床である。食品は細菌の数が増えると腐敗しやすくなるが、温度が低くなると細菌の繁殖活動は低下する。このことから、食品を冷蔵庫に入れて保存することは、食品を腐敗から守る一つの有効な方法といえる。

しかし、細菌の繁殖活動は、低温度においても完全には停止しない。つまり食品を冷蔵庫に入れると、入れない場合に比べて保存期間は長くなるが、腐敗を完全に抑制することができない事は、冷蔵庫を上手に使うために知っている必要がある。

冷蔵庫の歴史

その昔、「冷やす」、つまり温度を下げる手段は、井戸水か川につけるしかありませんでした。スイカを冷やすには一年を通して冷たい井戸水につけるのが一番でした。

また、冬場、雪や氷に閉ざされる地方では氷室に雪や氷を貯蔵して夏に取り出して使いました。人造氷の生産ができるようになると「氷箱」とか「冷蔵箱」「冷蔵器」などと呼ばれる家庭用冷蔵庫が現れました。

木製で、内側にはブリキを張り、外郭との間に木炭やフェルトを詰め込んで断熱材とし、上部に氷を入れる氷室、下部に食品を入れる冷蔵室がありました。上にある氷室の冷気が下の食物を冷やすしくみです。これらは、昭和三十年代まで一部の家庭で使われていました。氷は、氷屋が自転車の後にリヤカーを引いて毎日配達するもので、お客の家の前に来ると大きな氷をノコギリでザッザツと切って、台所へ運んでいました。

木製冷蔵庫

木製冷蔵庫

まだ冷凍機がなかった一八六九(明治二)年、中川嘉兵衛が北海道函館の五稜郭の外濠を借り受けて、良質な氷を大量につくることに成功しました。嘉兵衛は冬に氷をつくり、夏に横浜に向かう外国船に乗せて輸送しました。こうして、横浜の馬車道通りで、かき氷やアイスクリームなどが売り出されたのです。大衆ははじめて冷たいおいしさを知りました。さらにサイダー、ラムネ、ビールへと冷たいおいしさが広がりました。

一八七〇年、東京大学においてはじめて冷凍機を使って氷がつくられ、高熱で病床に臥していた福沢諭吉に届けられました。これには、福井藩主松平春嶽公が所有する実験用冷凍機が使われたといわれています。

一八七二年には、外国人により大阪と横浜に製氷工場がつくられました。

一九〇三年、第五回内国勧業博覧会において、わが国初の人造氷を使った家庭用冷蔵庫が展示されました。現代でいえばク―ラーボックスで、一九〇七年ごろに売り出されました。

冷蔵庫の開発~人造氷から冷凍サイクルヘの歩み

一八三四年、アメリカ人のヤコブーパーキンス(Jacob Perkins)がイギリスで働いているとき冷凍サイクルを利用して大造氷を製造する機械を発明し特許を取得しました。エーテルを使った圧縮型の製氷機です。このとき、人類ははじめて氷をつくることができたのです。

そして一八五〇年、フランス人エドモンド・カレー(Edmond Carre)が電気冷蔵庫を開発しました。

一九一八年には、アメリカのケルビネーター社がはじめて家庭用電気冷蔵庫を製造・販売しました。壁に埋め込む金庫のような形で、運転音がうるさかったそうです。

一九二七年には、アメリカのジー・イー社が、機械部が冷蔵庫箱体の上部に載っているモニタートップ型の家庭用電気冷蔵庫の量産化に成功し、累計一〇〇万台以上の大ヒット商品となりました。

日本での冷蔵庫の普及

家庭用電気冷蔵庫の国産第一号は、一九三〇(昭和五)年、芝浦製作所(現・東芝)が完成させました。価格は七二〇円で当時は庭付き一戸建ての家が買えるほどの値段でした。

一九三二年には三菱と日立が開発し、翌年にそろって発売しました。

この時期、各メーカーが生産体制を整えた背景に、それまで夜間だけの送電が昼間も行われるようになったことがあげられます。

戦後の一九四七年、国内の家庭川電気冷蔵庫の生産が再開され、昭和三十年代に入ると製造が本格化し、価格も量産効果で安くなり、大衆の手に届くものとなました。

一九五二年、日立が売り出した容積九〇リットルの小型冷蔵庫が好評だったため、各メーカーが一斉に参入し、冷蔵庫ブームとなりました。

一九五八年の普及率三・二%が、一九六三年には三九・一%となり、一九七一年には九〇%を超えました。昭和三十年代後半の「三種の神器」は、白黒テレビ、電気洗濯機、そして電気冷蔵庫でした。

このころ、冷凍庫付きニドア冷蔵庫が売り出され、後に野菜室、チルド室などが加えられていきます。各家庭の設置スペースは変化しませんが、ウレタンの断熱性能の向上や真空断熱の採用により薄壁化か図られて、年々冷蔵庫の容量が増えてきました。

また、大型化によるエネルギー増大を抑えるために、冷却方式や真空断熱の採用などにより大幅な省エネルギーを達成しています。

生産台数で見ると、一九五九年には年間生産量が五五万台、一九六〇年には九〇万台、一九六一年には一五〇万台と伸び続け、一九六三年にはなんと三四〇万台を生産するに至ります。いまでは年間四〇〇~四五〇万台も売れる大型商品です。 

冷蔵庫の将来、未来

バイオポリマー(生体高分子)ジェルが食料品を冷やしながら保存してくれる、何とも不思議な冷蔵庫。

冷蔵庫 冷却のしくみ、原理

ものを冷やす方法

ものを冷やす方法には、一般的に次の方法がある。

融解熱を利用する方法(氷の融解熱を利用する方法)

氷が融けるときに周囲の熱を奪うことを利用する方法で、氷枕、氷冷蔵庫、昔の氷室などがそれである。

蒸発熱を利用する方法

 冷媒を使用して、その冷媒の蒸発熱を利用する。


・圧縮式:冷媒としてフルオロカーボンや炭化水素系冷媒を使用する。家庭用冷蔵庫はこの方法が主流である。
・吸収式:冷媒に水、アンモニアなどを使用し加熱に電気ヒーター、ガス・石油などの熱源を利用する。主に冷凍倉庫など大きな設備に使用されているが、圧縮式に比べ、静音性に優れており、小型のものは医療用(病院向けなど)、ホテル用途などで使用されている。

昇華熱を利用する方法

この方法の代表的な例は、冷凍食品、アイスクリームなどの運搬時に使用するドライアイスが挙げられる。ドライアイスは二酸化炭素を非常に低い温度で固体にしたものでありこの固体が気体に変化するときに周囲の熱を奪うことを利用している。

ペルチエ効果を利用する方法(電子冷凍)

ペルチエ効果とは、二つの異なった金属または半導体を貼り合わせて、電流を流すと発熱したり、電流を逆に流すと吸熱(周りから熱を吸収する)したりする現象のこと。

圧縮機(コンプレッサー)を使用しないため、作動音がない。レジャー用のドリンククーラーや、ワインセラーなどに使用されている。

このペルチエ効果は、170年以上も前の1834年に発見されました。発見したのは、フランスのジャンーシャルルーペルチエという物理学者です。でも、そのころは、材料に金属を用いたために熱交換率が低く、実用化はされませんでした。実用化されたのは、1950年代の後半になってから。半導体を材料として使うことができるようになり、電気が伝わりやすくて、熱も伝わりやすいペルチエ素子がっくられるようになりました。
ペルチエ素子は、電子冷却素子とも呼ばれます。

ペルチエ効果

ペルチエ効果

冷蔵庫 物質の三態と熱の移動

物質は固体から液体、液体から気体にその状態が変化するときに周りから熱を奪う性質を持っている。例えば、注射をするときの消毒のアルコールは、皮膚の表面で液体から気体に変化することにより皮膚の熱を奪い取り冷たく感じる。これは蒸発熱(気化熱)の作用である。下図に物質の三態と熱の関係を示す。

物質の三態と熱の移動

物質の三態と熱の移動

冷蔵庫 冷凍サイクル

「物質が液体から気体に変化するときに、蒸発熱(気化熱)を奪う」(庫内から吸熱する)、
また「気体から液体に変化するとき、凝縮熱を排出する」(奪った熱を庫外に放熱する)こ
の状態の変化を連続させることにより、庫内を低温に憚つのが冷蔵庫の冷えるしくみである。
この繰り返しを[冷凍サイクル]といい、冷蔵庫では物質に冷媒を使用し連続して循環させている。
気化した冷媒に圧力をかけて(圧縮)、その後に放熱させて液化(凝縮)させる。この液化した冷媒を減圧し蒸発しやすい状態にして、気化(蒸発)させることにより、再び熱を奪い取るという繰り返しを行っている。
冷蔵庫の冷凍サイクルは、圧縮機(コンプレッサー)、凝縮器(コンデンサー、放熱器ともいう。防露パイプなども含まれる)冷媒を減圧する膨張弁(毛細管、キャピラリーチューブ)、蒸発器(エバポレーター、気化器、冷蔵庫では冷却器ともいう)などで構成されている。

冷凍サイクル

冷凍サイクル

冷蔵庫 冷媒の種類

従来は一般的に冷媒としてCFC冷媒であるフ囗ンR-12が使用されてきたが、オゾン層破壊の問題により1995年に全廃されHFC冷媒である代替フロンのR-134aに代わった。
さらに2002年から、地球温暖化防止対策のため、地球温暖化係数がR-134aの約1/400であるイソブタン冷媒(R-600a)を使用した「ノンフロン冷蔵庫」が発売され、現在では主流になっている。

冷媒特性

冷媒特性

ノンフロン冷蔵庫

ノンフロン冷蔵庫とは、冷媒、断熱材発泡剤ともにフロンを使用しない冷蔵庫である。
冷媒にはイソブタン(R-600a)、断熱材発泡剤にはシクロペンタンが使用されている。
①冷蔵庫の背面、庫内、コンプレッサーなどにイソブタン(R-600a)の使用を示すラベルが張り付けてあり、HFC冷媒を使用した冷蔵庫と区別することができる。

②万一、冷媒が漏れた場合にも冷媒に引火しないようスイッチや霜取りヒーターなどの電気部品の構造が工夫されている。
③イソブタン冷媒(R-600a)は可燃性なので、冷媒使用量やサービス時のガス溶接の禁止など、その取り扱いに十分に注意する必要がある。

冷蔵庫構造、冷却方式の種類

冷蔵庫の構成と構造

1:冷蔵庫 本体

2~3:しきり
4~7:扉
8:製氷室
9:冷凍室
10 :冷蔵庫
11:野菜室
12 : 蒸発器
13:冷却ファン
14:圧縮機
15:電動ダンパー
16:冷凍室温度センサー
17:冷蔵室温度センサー
18 : 蒸発器温度センサー
19 :冷凍室温度設定機能
20:冷蔵庫温度設定機能

        外 箱
                           内 箱
                           ドア(扉)
キャビネット   ドアバック
                           断熱材
                          ドアパッキン
                           付属品(棚など)

       圧縮機(コンプレッサー)
       凝縮機(コンデンサー)
冷凍サイクル 乾燥器(ドライヤー)
       毛細管(キャピラリチューブ)
       蒸発器(エバポレーター)

         制御基板
        温度調節器
制御機器    霜取りタイマー
        始動レバー
        オーバーロードリレー

冷蔵庫の構造

冷蔵庫の構造

直冷式(冷気自然対流方式)

冷蔵室、冷凍室にそれぞれ独立した蒸発器(冷却器)を設けて、熱伝導と自然対流により冷却する方式である(下図)。直冷式の特徴は、次のとおりである。
①冷凍室の壁面が直接、冷却器で構成されているので、冷凍食品を冷やしたり、氷を速く作ることができるなど効率的で、電気代が安い。
②霜取り時には、冷凍室(冷却器)から冷凍食品を退避させなければならない。
③冷凍室と冷蔵室のどちらかの温度で圧縮機の運転を制御するため、冷凍室・冷蔵室の独立した細かな温度制御ができにくい。

直冷式-冷蔵庫

直冷式-冷蔵庫

間接冷却方式(ファン式、冷気強制循環方式)

蒸発器(冷却器)で冷やされた冷気をファンで強制的に循環させ冷蔵室や冷凍室を冷却する方式である。ファンで冷気を循環させるが、風路にダンパーを設置しその開閉により1つの冷却器で冷蔵室や冷凍室、野菜室など複数の室の温度を制御冷却することができる。

ダンパーには機械式のダンパーサーモと電動ダンパーかおる。多室の冷凍冷蔵庫では電動ダンパーの採用が増えている。下図は冷凍室の奥に蒸発器(冷却器)を設けた4ドア冷蔵庫のしくみである。
間接冷却方式の特徴は、次のとおりである。
①霜取り時にヒーターで冷却器を温めても、冷却器が冷凍室や冷蔵室の壁で仕切られており、冷凍食品が解ける心配がない。霜取り時に冷凍食品を退避させる必要がなく、運転時間の積算などで自動的に霜取りを行う。

②冷凍室の温度を検知し圧縮機の運転を制御する。冷蔵室の温度は、ダンパーサーモなどによって冷気の吹き出し量を調整するので、冷凍室と冷蔵室を独立した温度に制御することができる。

間接冷却式 冷蔵庫

間接冷却式 冷蔵庫

ツイン冷却方式(ダブル冷却方式)

1つの冷却器で冷蔵室、冷凍室を温度制御する方式(1冷却器方式)と、冷蔵室、冷凍室それぞれ専用の冷却器を設けたツイン冷却方式がある、ツイン冷却方式では多ドア型冷蔵庫において、冷蔵室や冷凍室をそれぞれの用途に応じて効率的に冷却するため、冷凍専用、冷蔵専用の独立した冷却器(ツイン冷却器)を設けて、これらの冷却器への冷媒の流れを制御弁(三方弁)によって切り替えている。

1冷却方式&ツイン冷却方式

1冷却方式&ツイン冷却方式

冷蔵庫 インバーター制御

従来の冷蔵庫は扉の開閉や周囲温度の変動による庫内の温度変動に対して圧縮機をON/OFFさせて庫内の温度を一定に保つように制御していた。最近の冷蔵庫はインバーター制御されているものが多い。インバーター制御は庫内の温度変動に対して圧縮機やファンモーターの回転数を無段階に制御する。きめかい運転ができるので、省エネ効果が発揮できる。

冷蔵庫 インバーター制御

冷蔵庫 インバーター制御

現在では、さらに進化した「PAM制御」も登場しています。PAMとはPulse  Amplitude Modulationの略。電圧を制御してモーター回転数を変化させることで、よりきめ細かいかい制御を可能にし、省エネのみならずハイパワーを両立した方式です。冷蔵庫の他、エアコンなどにも採用されています。

冷蔵庫 霜取り

運転中の冷却器には庫内の空気や食品から奪われた水分が霜となって付着する。霜が冷却器に付着すると、霜が冷気を遮断し冷却効率が悪くなるため、定期的に霜を取る必要がある。

霜取り方式はヒーター加熱式であり、家庭用冷蔵庫では冷却動作停止時に自動的に除霜が行われる。ヒーター加熱式とは冷却器に取り付けてあるヒーターに通電して霜を溶かす方式で、圧縮機の運転時間を積算し一定時間に達すると霜取り運転に切り替わる。

霜取り運転がスタートすると圧縮機と送風ファンは、運転を停止してヒーターに通電して霜を溶かす。冷却器の表面温度をセンサーで監視しており冷却器の温度が設定温度に到達すると霜取りを終了し通常運転に復帰する。

冷蔵庫 霜取りヒーター

冷蔵庫 霜取りヒーター

冷蔵庫の放熱について

冷蔵庫は、庫内の熱を庫外に放出することにより、庫内を低温に保つ器具である。したがって、据え付け直後や新たに多くの食品を入れたとき、夏場など庫内の温度が高くなったときに、冷蔵庫のドア回り、本体側面、上面、背面がかなり熱く(50~60°C)なる。
これは放熱量が増大したことによるもので異常ではない。また、この熱は冷蔵庫表面の結露防止にも役立っている。

冷蔵庫の放熱を効率的に行うためには下図のように冷蔵庫と壁等の隙間を確保しておけば節電にもつながります。

冷蔵庫 設置条件 隙間

冷蔵庫 設置条件 隙間

冷蔵庫の真空断熱材

真空断熱材(VIP:Vacuum Insulation Panel)は従来の断熱材に比べて非常に高い断熱性能を有しており熱伝導率は従来から使われてきたウレタンフォームの約1 / 20倍である。冷蔵庫の外箱に真空断熱材を挟み込んで構成することで省工ネ性能を向上させることができる。また、壁の厚さを薄くできるので同じ外形のサイズでも大幅に内容積を増やすことができる。
エコキュートの貯湯タンク、ジャーポットなどの家電品にも採用されており省エネ性の改善がされている。
真空断熱材は繊維系(グラスファイバー)や連通ウレタンの芯材をフィルムで包み、フィルム内を真空状態にして密封・パネル化しかものである。

この真空断熱材を外箱と内箱の間に配置し、そのすき問にシクロペンタン処方ウレタンフォーム断熱材を充填すると、ウレタンフォームだけの時より断熱性を高めることができる。この結果、庫外からの熱の侵入を低減できるので省エネ性が高くなる。また真空断熱材を有効に配置し断熱材を薄くすると同じ外形でも庫内容積を大きくすることができる。

真空断熱材とは、断熱材の周囲を真空状態にし、気体による熱伝導を限りなくゼロに近づけることにより、断熱性能を高める真空技術を利用した断熱材です。

真空断熱材 ビップエース 断熱効果

真空断熱材 ビップエース 断熱効果

画像出典先:旭ファイバーグラス サイト

冷蔵室の温度調整

冷蔵室の温度は、JISの規定で、[室温が15~30 °Cにおいて冷蔵室内を0~10 °Cの範囲に調整できること]となっているが、実際市販されている家庭用冷蔵庫の冷蔵室は一般的な使用条件において、1~5°Cに設定されており、±2°Cくらいの範囲で調整ができるものが多い。しかし、ドアの開閉回数が頻繁だったり、食品の詰め過ぎにより冷気の循環が悪くなったりすると、庫内温度は上昇する。
食品温度を低く保つためには、特に扉の開閉は素早く、そして開閉回数をできるだけ少なくすることが大切である。 参考に、扉開閉による庫内温度変化を下図に示す。

冷蔵庫 扉開閉による食品温度変化

冷蔵庫 扉開閉による食品温度変化

画像出典先:コープ九州

冷蔵庫温度の調節

庫内の温度は、冷蔵庫の据え付け条件、外気温度、湿度、使用条件などにより左右される。特に、外気温度が高い場合や扉の開閉が激しい場合は、取扱説明書に従って温度を調節する。据え付け場所の温度、ドアの開閉、食品の量や入れ具合などにより変化するので一概にはいえないが、温度調節と庫内温度の関係は下表のようになっている。冷蔵庫の据え付け場所の温度が30℃で、食品を入れずにドアを閉じたままにして安定状態に達したとき、庫内のほぼ中央下寄りで測定した温度である。

冷蔵庫内温度の目安

冷蔵庫内温度の目安

冷蔵庫の保存温度測定

冷蔵庫に保存している食品は、約8割が水分であり、比熱が大きいので空気のように簡単には温度変化をしない。一般の空気温度を測定する温度計では、食品の保存温度は測定できない。温度測定には、空気温度の影響を受けにくい冷蔵庫用温度計を使用する。

冷蔵庫用電子温度計 PC-3300

アマゾン 楽天

一般のアルコール温度計で食品の保存温度を測定するには、水を約100cc入れた容器を庫内の中段の中央に置き、その中に温度計の感温部を3時間程度浸しておくことにより、食品の保存温度に近い温度が測定できる。なるべくドアの開閉回数の少ない夜間などに前述したアルコール温度計を入れておき、翌朝一番にドアを開けたときの温度を測定するとよい。

冷蔵庫 同じ温度を確保 ツインダンバー

庫内の温度を一定にコントロールするために、各部屋に温度センサーを設けてチェックしています。従来の冷蔵庫は、冷凍室に冷却器が一つだけあって、庫内のすべての部屋が、すきまを介してつながっている構造でした。

冷凍室と冷蔵室の間には「ダンパー」という装置があり、庫内の空気の流れを調整する、いわば弁のような役割をします。冷蔵室の温度が上がったことを温度センサーが感知するとダンパーのフタが開き、冷凍室の温度が上がると冷却機で下げるという仕組みです[下図]。

冷蔵庫 ツインダンバー

冷蔵庫 ツインダンバー

現在の冷凍冷蔵庫では、冷蔵室と冷凍室のそれぞれに温度センサーと冷却器が備わっており、独立して冷却器を働かせており、庫内の空気をファンで循環させることで、それぞれの部屋の温度をうまく保つ仕組みになっています。ついつい、たくさんの食品を詰め込んでしまいがちですが、それは避けたいものです。食品と食品の間には、空気が循環するための通り道が必要なのです。

動画 冷蔵庫の仕組み、構造

日本工業規格「家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法」 JIS C 9801-1~3

解説概要:

この規格は,機器の内部を冷気自然対流によって冷却する又は冷気強制循環によって冷却する家庭用冷却機器の基本特性,及びその特性を検査するための試験方法に関する一般的共通事項について規定する。この規格で規定する試験は,冷却機器の基本設計及び動作を評価するための形式試験である。この規格は,製品の抜取り若しくは適合性の評価,又は認証のための要件は規定しない。この規格に関して特定の形式の冷却機器の性能を検証する必要があるときは,可能な限り,指定する全ての試験を同一機器に適用する。試験は,特定の特性を調査するために個別に用いてもよい。

その他の詳細は下記のサイトを参考にして下さい。

JISC日本工業標準調査会サイト

「家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法」の日本工業規格はJIS C 9801-1~3  です。JISC日本工業標準調査会サイト内のJIS検索から内容が閲覧可能です。(但し印刷不可)

*現在はIEインターネット エクスプローラーのみ閲覧可。

kikakurui.com |JIS規格票をHTML化したサイト

「家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法」の日本工業規格は9801-1~3 が全文、閲覧、印刷可能です。(但し図、イラスト含まず)

JIS C 9801-1 家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法

JISの見直し~年間消費電力量と省エネ目標

電気冷蔵庫などが1999 (平成11)年に、「エネルギーの使用の合理化に関する法律(省エネ法)」でトップランナー基準の特定機器に指定された際に、エネルギー消費効率の指標として、JISC 9801 : 1999 「家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法」に規定する方法で測定された「年間消費電力量」が採用された。
しかし、JIS C 9801 : 1999 に規定する測定方法では、庫内温度の調節装置の設定、設置条件および周囲温度の影響などによるヒーター動作の違いにより、使用実態と異なることから見直しが行われた。電気冷蔵庫などの「年間消費電力量」の測定方法が改正され、2006年(平成18)年に新JISC 9801 : 2006 「家庭用電気冷蔵庫及び電気冷凍庫の特性及び試験方法」として公示された。
主な変更点は、①周囲温度、②調節装置の設定(庫内温度)、③追加負荷投入、④自動製氷機動作、⑤扉開閉回数などであるが、概要は下表のようになっている。

冷蔵庫などの年間消費電力量の測定基準(冷気強制循環方式)

冷蔵庫などの年間消費電力量の測定基準(冷気強制循環方式)

なお、実使用の消費電力量は周囲温度、周囲湿度、ドアの開閉回数、新たに入れる食品
の温度や量により変化することを考慮しなければならない。

冷蔵庫の省エネ目標基準の見直し

トップランナー基準を達成すべき目標年度(2004年度)を迎えたことやJISの消費電力測定方法の見直しが行われたため、2006年に省エネ目標基準が見直され、2010年度を目標年度とする新たな基準が策定された。間接冷却方式冷凍冷蔵庫の場合300L以下、300 Lを超えるものは冷蔵室区画の扉数が1枚と2枚以上の3区分に分けられており、それぞれの区分は冷凍室の定格内容積、冷凍室以外の定格内容積により算式が設定されている。

表1-7にて算出した基準エネルギー消費効率をJISC9801 : 2006 の消費電力量試験に規定する方法により測定した年間消費電力量で割った比率が、省エネ基準達成率である。
省エネ基準達成率(%)= 

基準エネルギー消費効率(kwh/年)÷ 年間消費電力(kwh/年)×100
冷蔵庫の場合、省エネラベルには目標年度と省エネ基準達成率、年間消費電力量が表示される。

2010年 冷蔵庫 省エネ 目標基準値算定式

2010年 冷蔵庫 省エネ 目標基準値算定式



シェアする

  • このエントリーをはてなブックマークに追加

フォローする